
ColorfulCurves: Palette-Aware Lightness Control and Color Editing via
Sparse Optimization
CHENG-KANG TED CHAO, George Mason University, USA
JASON KLEIN, Cornell University, USA
JIANCHAO TAN, Kuaishou Technology, China
JOSE ECHEVARRIA, Adobe Research, USA
YOTAM GINGOLD, George Mason University, USA

In
pu

t

Palette-based
Luminance Editing

Ed
ite

d

Sparse Optimization
(Image-space Constraint)

Sparse Optimization
(Mixed Constraints)

Fig. 1. ColorfulCurves extracts a hue-chroma palette and builds palette-based tone curves to allow sparse, per-palette-color control of lightness over the image.
Users place constraints on palette colors, tone curves, or directly on image pixels. ColorfulCurves optimizes the palette colors and lightness curves to satisfy
the user’s constraints. Left: The user adds contrast to the rocks with S-shaped curve constraints on the red and brown colors. Center: The user places an
image-space constraint on the building to make it dark brown. ColorfulCurves optimizes for the sparsest satisfying change to the palette. Right: The user
places a mix of image-space, palette, and curve constraints. Photos courtesy of (left to right) Jeremy Bishop, Nastya Dulhiier, and Pietro De Grandi.

Color editing in images often consists of two main tasks: changing hue
and saturation, and editing lightness or tone curves. State-of-the-art palette-
based recoloring approaches entangle these two tasks. A user’s only lightness

Authors’ addresses: Cheng-Kang Ted Chao, cchao8@gmu.edu, George Mason Univer-
sity, USA; Jason Klein, jak532@cornell.edu, Cornell University, USA; Jianchao Tan,
tanjianchaoustc@gmail.com, Kuaishou Technology, China; Jose Echevarria, echevarr@
adobe.com, Adobe Research, USA; Yotam Gingold, ygingold@gmu.edu, George Mason
University, USA.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies bear the full citation on the
first page. Copyrights for third-party components of this work must be honored. For
all other uses, contact the owner/author(s). This work is licensed under a Creative
Commons Attribution 4.0 International License.

© 2023 Copyright held by the owner/author(s).
0730-0301/2023/8-ARTN
https://doi.org/10.1145/3592405

control is changing the lightness of individual palette colors. This is inferior
to state-of-the-art commercial software, where lightness editing is based
on flexible tone curves that remap lightness. However, tone curves are
only provided globally or per color channel (e.g., RGB). They are unrelated
to the image content. Neither tone curves nor palette-based approaches
support direct image-space edits—changing a specific pixel to a desired
hue, saturation, and lightness. ColorfulCurves solves both of these problems
by uniting palette-based and tone curve editing. In ColorfulCurves, users
directly edit palette colors’ hue and saturation, per-palette tone curves,
or image pixels (hue, saturation, and lightness). ColorfulCurves solves an
𝐿2,1 optimization problem in real-time to find a sparse edit that satisfies
all user constraints. Our expert study found overwhelming support for
ColorfulCurves over experts’ preferred tools.

CCS Concepts: • Computing methodologies→ Image processing.

Additional Key Words and Phrases: palette-based image editing, color, opti-
mization, lightness, tone curves, usability

ACM Trans. Graph., Vol. 42, No. 4, Article N. Publication date: August 2023.

https://unsplash.com/photos/vlGlSu89FiY
https://unsplash.com/photos/STGJ3VZ5zGE
https://unsplash.com/photos/T7K4aEPoGGk
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3592405

N:2 • Cheng-Kang Ted Chao, Jason Klein, Jianchao Tan, Jose Echevarria, and Yotam Gingold

ACM Reference Format:
Cheng-Kang Ted Chao, Jason Klein, Jianchao Tan, Jose Echevarria, and Yotam
Gingold. 2023. ColorfulCurves: Palette-Aware Lightness Control and Color
Editing via Sparse Optimization. ACM Trans. Graph. 42, 4, Article N (Au-
gust 2023), 12 pages. https://doi.org/10.1145/3592405

1 INTRODUCTION
Color editing is an important task performed by photographers and
photo editors. Existing color editing software allow users to alter
the hue, saturation (or chroma), and lightness of pixels globally or
more locally through different combinations of tools. In commercial
applications, lightness editing is typically achieved by interactively
editing tone curves [Blackmagic Design 2020; Life After Photoshop
2020]. Tone curves are global functions that remap pixels’ lightness
values. Tone curves are usually parametric, with a variable number
of control points for flexibly editing different tonal regions (i.e.,
black, shadow, mid-tone, highlight, and white regions). Commercial
applications allow the curves to be edited through various graphical
interfaces, such as directly manipulating spline control points, over-
drawing the curve, or adjusting sliders, wheels, or clicking/tapping
on the image [Adobe 2022; Color Grading LLC 2022].

To address artists’ desire for color editing beyond lightness, com-
mercial tools also offer a separate tone curve for each color channel
(i.e., RGB)—still applied globally to all pixels. Remapping red, green,
or blue values independently affects the hue and chroma of pixel
colors, enabling a wider range of color edits. While some users learn
to achieve their intended global color grades through practice or
simplified interfaces like wheels [Adobe 2020; Gardiner 2022], many
edits are impossible through RGB curves alone. For example, the
red tone curve will affect red and yellow pixels. This is due to the
non-sparsity of RGB color space—or any 2D representation of hue
and chroma. The set of pixels unaffected by, e.g., the red channel
has measure zero. Users can sometimes overcome non-sparsity by
creating masks. However, there are still situations like smooth color
transitions where masks are not trivial or impossible to create.
Palette-based recoloring [Chang et al. 2015a] aims to provide a

more efficient and intuitive approach to color editing. It does this
by extracting a set of representative colors—a color palette—for the
image. Edits to the palette colors directly translate to edits on the
image, according to the mixing weights for each pixel. Different
methods compute palettes and weights with different properties
[Aksoy et al. 2017; Chang et al. 2015a; Tan et al. 2018a; Wang et al.
2019], seeking to balance between the number of colors and spar-
sity of the weights. However, existing palette-based methods have
two main limitations: 1) Palette colors don’t consider tone, so it’s
impossible to change a palette color’s behavior in shadow, mid-tone,
and highlight regions separately. 2) If an object or region’s color is
not present in the palette, the user must find the palette colors that
affect the region and mentally invert the mixing weights.

ColorfulCurves extends palette-based recoloring with tonal con-
trols and pixel-level color constraints. Curve-based edits become
sparse and color-aware. To separate tonal controls from the other
color dimensions, we extract hue-chroma color palettes and their
corresponding pixel weights and assign a tone curve to each color
in the palette. ColorfulCurves provides a commutative interface

Input
Palette-based

Luminance Editing
Sparse Optimization
(Mixed Constraints)

Fig. 2. ColorfulCurves solves for a sparse change to the palette and its tone
curves that satisfied all user constraints. (Middle) The user places curve
constraints to edit the lightness of the face without affecting the lightness
of the shirt (white arrow). (Right) An additional image-space constraint
changes the color of the shirt to green. Photo courtesy of Vince Fleming.

in which users can place color constraints directly on image pix-
els, palette colors, or tone curves. ColorfulCurves finds a sparse
solution—the one that affects the fewest palette colors the least—
in real-time by decomposing an 𝐿2,1 optimization into an alter-
nating sequence of extremely efficient sub-problems. Our expert
study shows that ColorfulCurves is powerful and preferable to ex-
perts’ favorite commercial software for color editing tasks (Sec. 6).
We show additional applications, e.g., depth weights and greyscale
conversion control, in Sec. 5. Code for this work can be found at
https://github.com/CraGL/ColorfulCurves.

2 RELATED WORK
Palette-based recoloring. Palette-based recoloring was first pro-

posed by Chang et al. [2015a], who proposed to extract a repre-
sentative color palette via color clustering and recolor images via
radial-basis-function-weighted color deformations. Tan et al. [2016]
proposed a geometric approach to palette extraction based on sim-
plified convex hulls in RGB-space and optimization to decompose
an image into a translucent layer per color for over-compositing.
Tan et al. [2018a,b] extended [Tan et al. 2016] with a simple and
efficient approach in RGBXY-space to compute spatially coherent
additive mixing weights for image recoloring and color harmoniza-
tion. We extend the idea of this approach by building tone curves on
hue-chroma palette colors, allowing users to achieve flexible, per-
palette-color luminance editing. Though users are able to change the
luminance of an RGB-palette color in Tan et al. [2018a], their linear
formulation is severely limits user control (Fig. 3). Wang et al. [2019]
optimized the colors of a geometric palette to be more compact and
representative and less sensitive to outliers. Other approaches for
RGB-space palette and weight computation are orthogonal to our
approach. Zhang et al. [2021a] solved for palette colors and mix-
ing weights simultaneously in a global optimization. Grogan and
Smolic [2020] split RGB-space into several regions and use different
geometric methods to unmix pixel colors based on their location in
RGB-space. Unmixing approaches such as [Aksoy et al. 2016, 2017]
minimize an energy to find a small set of sparse layers of nearly,

ACM Trans. Graph., Vol. 42, No. 4, Article N. Publication date: August 2023.

https://doi.org/10.1145/3592405
https://unsplash.com/photos/j3lf-Jn6deo
https://github.com/CraGL/ColorfulCurves

ColorfulCurves: Palette-Aware Lightness Control and Color Editing via Sparse Optimization • N:3

Input [Tan et al. 2018] ColorfulCurves

Fig. 3. Palette-based methods like [Tan et al. 2018a] treat pixel colors as
mixtures of palette colors in RGB-space, making it impossible to access and
edit different lightness of a palette color non-linearly (mint or pink in this
example). Our approach disentangles lightness from hue-chroma, allowing
users to edit independent lightness curves for the mint and pink palette
colors. Additional comparisons are shown in Fig. 13.

though not entirely, homogeneous colors. Koyama and Goto [2018]
generalize [Aksoy et al. 2016, 2017]’s work to support advanced
color blending functions. Two recent works solve the unmixing
problem using neural networks to achieve fast performance [Aki-
moto et al. 2020; Horita et al. 2022]. While the soft color layers
generated by unmixing approaches allow users to localize edits, re-
coloring is more challenging due to the heterogeneous layer colors
they generate.

Luminance/lightness editing and tone mapping. Luminance and
lightness editing are common photo manipulation tasks to improve
the visual appearance of images by, e.g., adjusting the contrast or
altering the highlights and shadows. In the photo manipulation liter-
ature, luminance and lightness are often used interchangeably (and
erroneously). Several approaches automatically adjust luminance
and lightness for specific effects. Bailey and Grimm [2006] enhanced
the apparent depth of object images via changing luminance and
color temperature to achieve perceptually meaningful edits. Khan
et al. [2006] and Boyadzhiev et al. [2015] utilize luminance as their
basic appearance property for material editing. More recently, Ma
et al. [2022] trained a two-stage network to bring up image lightness
and enrich chromaticity to mimic artists’ retouching. Tone mapping
is an important parametric technique that modulates luminance.
Early approaches such as Debevec and Gibson [2002] proposed an
operator on high-contrast images that preserves image details and lu-
minance contrast. Durand and Dorsey [2000] proposed a temporally
coherent approach suitable for interactive rendering. Mantiuk et al.
[2008] proposed to minimize visible contrast distortions for repro-
ducing images on different given displays. Tone mapping algorithms
can’t be compared to ground truth data from the physical world,
since it is ultimately an aesthetic preference. [Bychkovsky et al.
2011] created a dataset of high-quality human-retouched images
for automating photo adjustment. A recent adversarial approach
[Vinker et al. 2021] was proposed to train on unpaired HDR and
LDR images to automate tone mapping. Unlike these automatic
approaches, we provide palette-based tone curves as an interface
for users to interactively manipulate lightness to achieve their de-
sired edits. Our approach leverages mixing weights as a proxy to
control lightness corresponding to hue-chroma palette colors. Our
approach can be generalized to use different weighting schemes for
other applications (Sec. 5).

?

?

?

b

(0.4, 0.4, 0.2)

(0.4, 0.4, 0.2)
c′

a

c

Fig. 4. An illustration of the difficulty achieving a desired image-space color
with palette-based image editing. The color 𝑐 is defined as a fixed mixture of
the three colors. To achieve a specific target color 𝑐′ in palette-based editing,
users must adjust the palette colors. This is difficult as there are infinitely
many solutions, many of which require adjusting multiple palette colors to
stay in the gamut. Users must mentally invert the weights and iteratively
adjust the palette until the target color is achieved.

3 BACKGROUND AND MOTIVATION
Background. The geometric palette-based editing formulation

computes image colors 𝐼 ∈ R𝑁×3 by applying per-pixel mixing
weights𝑊 ∈ R𝑁×𝑝 ⊆ [0, 1] to the palette 𝑃 , i.e., 𝐼 = 𝑊 · 𝑃 . The
rows of 𝑃 are colors in a gamut, e.g., the unit cube in RGB-space,
and the rows of𝑊 sum to one. Users simply change the colors in
𝑃 to globally recolor the image. The mixing weights remain fixed
[Tan et al. 2018a, 2016; Wang et al. 2019; Zhang et al. 2021b].

lightness Curves. While this formulation provides easy and fast
color editing, it cannot support advanced curve-based lightness
edits found in virtually all professional software. It is impossible to
control areas with low, mid, or high tones independently because
palette-based editing is limited to linear mixtures of colors (Fig. 3).
Users can edit the palette, choosing brighter or darker colors, but
the resulting image colors will still be linear mixtures of the palette
colors (Fig. 13). An image color represented as a 1

4 : 3
4 blend of

a palette color and black will always remain a 1
4 : 3

4 blend. This
can’t be solved by expanding the palette, because hue, chroma, and
lightness are entangled.

Image-Space Constraints. Palette-based edits are convenient when
users want to directly edit, e.g., the green color mixed into pixels.
They are inconvenient when users want to directly edit a pixel’s
color. The indirection from the palette to a pixel’s color makes
precise changes at an image-space location extremely tedious. Users
must repeatedly adjust multiple palette colors in order to achieve
their desired color change. Formally, given a color 𝑐 ∈ R1×3 with its
corresponding mixing weights𝑤 ∈ R1×𝑝 , we can express 𝑐 = 𝑤 · 𝑃 .
If a user wishes to change 𝑐 to a different color 𝑐′, the user must
mentally invert the weights and anticipate the effects of changes
to the palette 𝑃 . In general, there are infinitely many solutions
involving multiple palette colors. This is even more difficult when
the palette mixture at a given pixel is non-obvious (Fig. 4).

4 METHOD
Our goal is to allow users to edit the palette colors and lightness of
a given image in real-time using constraint-driven optimization. In

ACM Trans. Graph., Vol. 42, No. 4, Article N. Publication date: August 2023.

N:4 • Cheng-Kang Ted Chao, Jason Klein, Jianchao Tan, Jose Echevarria, and Yotam Gingold

support of this goal, we seek (I) a linear palette-based editing for-
mulation for efficient optimization and (II) a color-space which dis-
entangles lightness and hue-chroma. Approaches that non-linearly
apply palette edits [Chang et al. 2015b] or extract colorful layers [Ak-
soy et al. 2017; Koyama and Goto 2018] do not satisfy (I). Geometric
palettes (Section 3) naturally satisfy (I), though they all consider
lightness to be part of the palette definition by extracting palettes
in a 3D color space (typically RGB). To satisfy (II), we instead ex-
tract 2D palettes in hue-chroma space, namely, the 𝑎𝑏 dimensions
of CIE LAB color space. We adapt Tan et al. [2018a]’s approach for
palette extraction and weight computation due to its efficiency and
simplicity. We extract 2D palettes in 𝑎𝑏-space and compute weights
in 𝑎𝑏𝑥𝑦-space for spatial smoothness. Thus, instead of computing a
simplified 3D convex hull as the palette and Delaunay tessellating
a 5D convex hull to compute weights, we compute a simplified 2D
convex hull as the palette and Delaunay tessellate a 4D convex hull
to compute weights. This has lower computational complexity, by
a polynomial degree in the case of the Delaunay tessellation. We
did not evaluate adapting alternative geometric palette approaches
[Wang et al. 2019; Zhang et al. 2021b]; they may have led to more
compact palette colors and sparser weights at the cost of an iterative
optimization.
Given an image 𝐼 ∈ R𝑁×3 in Lab-space, the 𝑎𝑏 portion of 𝐼 , i.e.

𝐼 |𝑎𝑏 ∈ R𝑁×2, can be decomposed as

𝐼 |𝑎𝑏 =𝑊 · 𝑃 (1)

where 𝑊 ∈ R𝑁×𝑝 ⊆ [0, 1] are spatially coherent weights and
𝑃 ∈ R𝑝×2 is a palette in 𝑎𝑏-space with 𝑝 colors. In RGB-space, ex-
tracted palettes typically include an approximately black and white
color; Tan et al. [2018a] explicitly tessellate a
line of greys. This allows direct control over
grey and linear control over lightness. How-
ever, in 𝑎𝑏-space, all greys are at (0, 0). It is
unlikely that a convex hull will have a vertex
at the center of the 𝑎𝑏 plane. Therefore, we al-
ways add grey to our 𝑎𝑏-space palette 𝑃 (inset
right) and tessellate a fan around it.
We further denote 𝐿0 ∈ R𝑁×1 as the original lightness of 𝐼 . We

define a set of lightness curve functions 𝐹 = {𝑓1, 𝑓2, · · · , 𝑓𝑝 }, where
each 𝑓𝑖 : [0, 1] → [0, 1] corresponds to each palette color 𝑃𝑖 , for
𝑖 = 1, · · · , 𝑝 . For simplicity, we denote 𝑓𝑖 (𝐿0) as a vector, where each
element in 𝑓𝑖 (𝐿0) is the result of mapping each element in 𝐿0 using
𝑓𝑖 . The lightness portion 𝐼𝐿 of 𝐼 can then be computed as

𝐼 |𝐿 =

𝑝∑︁
𝑖=1

𝑊𝑖 ⊙ 𝑓𝑖 (𝐿0) (2)

where𝑊𝑖 is the 𝑖th column of𝑊 and ⊙ is the Hadamard product.𝑊𝑖

are re-normalized weights, where we scale down the grey weight by
100 and re-normalize𝑊 so that pixel lightness will be dominated by
the colorful members of the palette. Our formulation generalizes the
traditional RGB tone curves to more color-aware palette-based tone
curves that provide more flexibility and control. This formulation
perfectly reconstructs 𝐿0 in the initial image decomposition, since
each row of𝑊 sums to 1 and 𝑓𝑖 are initially the identity map. Users

edit the image by changing the 𝑎𝑏-space palette 𝑃 and curve func-
tions 𝐹 . The mixing weights𝑊 propagate each palette’s lightness
function to the pixels.
Directly changing palette hue-chroma in Eq. 1 or palette-based

tone curves in Eq. 2 provides an easy and computationally efficient
approach for image editing. However, the indirection from a palette
and a set of 𝑓𝑖 ’s to a pixel color is non-trivial and presents a usability
problem. Users can’t directly edit pixel colors. Because the mapping
from a desired pixel color to palette and lightness curves is ambigu-
ous, ColorfulCurves optimizes for a palette and a set of lightness
functions that satisfy the following user constraints placed on:

(1) The given image, i.e. image-space constraints, to specify de-
sired colors directly on selected pixels.

(2) The palette, i.e. palette constraints, to directly change a palette
color or keep it from changing.

(3) Curve functions, i.e. curve constraints, to directly manipulate
curve functions for lightness edits.

4.1 Curve Desiderata
Users edit lightness by changing the curve functions 𝐹 in Eq. 2.
However, users constrain specific lightness values, not entire curve
functions. We have three desirable properties for the 𝑓𝑖 ’s [Margulis
2022]:

(1) Unless explicitly specified by the user, 𝑓𝑖 (0) = 0 and 𝑓𝑖 (1) = 1
to maintain the original white and black points in the image.

(2) 𝑓𝑖 should be smooth to avoid sharp changes between tones.
(3) 𝑓𝑖 should satisfy the user’s curve constraints.
Constrained lightness editing, i.e., placing control points directly

on curves, is more general than using gamma correction functions
since an exponential function can only interpolate three points (e.g.,
black, white, and a single arbitrary curve constraint). In practice,
photo-editing software like Lightroom or DaVinci Resolve create in-
terpolating splines for users’ curve constraints. Spline interpolation
is straightforward when users are directly manipulating a single
curve function, but our curves need to be variational to account
for the indirection from a constraint on a pixel’s lightness to the
lightness curves. This is because pixels are weighted averages of
palette colors. An image-space constraint has infinitely many so-
lutions that blend to the desired appearance. Therefore, we wish
to choose among them in a principled way by evaluating the loss
computed over the solution curve—in our case the sparsest solution
(Sec. 4.2).

4.2 Optimizing for Sparse Edits
Our goal is to find a minimum change from the original palette
𝑃 and identity mapping lightness curves that satisfy image-space
constraints, palette constraints, and curve constraints. Since there are
infinitely many solutions, we wish to find the solution that changes
the fewest number of palette colors the least. Given color palette
𝑃 ∈ R𝑝×2 and weights𝑊 ∈ R𝑁×𝑝 , let𝑊 ∈ R𝑝×𝑐 be a collection of
mixing weights from the pixels at image-space constraints, where 𝑐
is the number of constraints. Since we seek global sparsity among
all lightness curves and palette colors, we evaluate the lightness
curves on their entire domain discretized at 𝑠 equally spaced sam-
ple points for each 𝑓𝑖 . We denote 𝐿𝑖 ∈ R𝑠 as a vector of function

ACM Trans. Graph., Vol. 42, No. 4, Article N. Publication date: August 2023.

ColorfulCurves: Palette-Aware Lightness Control and Color Editing via Sparse Optimization • N:5

values at sample points for 𝑓𝑖 and 𝐵 ∈ R𝑠×𝑠 as a Laplace operator
(with mirroring at endpoints for natural boundary conditions). We
formulate the sparsity loss 𝐸𝑠𝑝 on both palette colors and lightness
curves as the following 𝐿2,1 norm:

𝐸𝑠𝑝 =

𝑝∑︁
𝑖=1

√︃
𝐿𝑇
𝑖
𝐵𝑇𝐵𝐿𝑖 +𝑤𝑠𝑝 · ∥𝑞𝑖 · Δ𝑃𝑖,∗∥22 (3)

where𝑤𝑠𝑝 is relativeweight and𝑞 ∈ R𝑝 is a penalty vector (1, ..., 1, 6)
that increases the cost (by a factor of 6) of moving the grey palette
color. 1 To satisfy the desired lightness from the image-space con-
straints (considering only the luminance values) and direct curve
constraints from direct curve manipulation, we can now define the
loss 𝐸𝑙 for lightness as

𝐸𝑙 =

𝑐∑︁
𝑗=1
∥𝑆 𝑗 ⊙

(
𝑝∑︁
𝑖=1

𝑊𝑖 𝑗𝐿𝑖

)
−𝐶 𝑗 ∥22 +

𝑝∑︁
𝑖=1
∥𝑆𝑖 ⊙ 𝐿𝑖 −𝐶𝑖 ∥22 (4)

The first term measures lightness error for image-space constraints.
The second term measures lightness curve constraint satisfaction.
Here, 𝑆,𝐶 ∈ R𝑠×𝑐 are a selection matrix and lightness constraint
matrix, respectively, where the 𝑗 th column, i.e., 𝑆 𝑗 , is a one-hot
vector indicating the location of the lightness constraint, and𝐶 𝑗 is a
vector of all zeros except the desired lightness value at the location
of the lightness constraint. The same applies mutatis mutandis to
𝑆,𝐶 ∈ R𝑠×𝑝 for placing constraints directly on lightness curves.

For hue-chroma, we allow users to place palette constraints on
palette colors to perform global edits or to keep them from changing.
We define an index set 𝑃𝑐 to store which palette colors have palette
constraints. We compute the loss 𝐸𝑝 for the hue-chrome palette as

𝐸𝑝 =

𝑐∑︁
𝑗=1

(

𝑝∑︁
𝑖=1

𝑊𝑖 𝑗 (𝑃𝑖,∗ + Δ𝑃𝑖,∗)
)
− 𝐶∗, 𝑗

2
2

+
∑︁
𝑖∈𝑃𝑐

(𝑃𝑖,∗ + Δ𝑃𝑖,∗) − 𝑃𝑖,∗
2
2

(5)
where 𝐶 ∈ R2×𝑐 is a matrix of 𝑎𝑏-space color constraints and
𝑃 ∈ R |𝑃𝑐 |×2 stores target palette colors. The first term measures
hue-chroma error for image-space constraints. The second term
measures hue-chroma palette constraint satisfaction. We can solve
for the smallest changes to both lightness curves and palette hue-
chroma (Eq. 3) satisfying all constraint types by combining Eqs. 4
and 5:

{𝐿𝑖 ,Δ𝑃𝑖 } = arg min
𝐿𝑖 ,Δ𝑃𝑖

𝐸𝑠𝑝 +𝑤𝑒𝑞 (𝐸𝑙 + 𝐸𝑝)

subject to − 128 ≤ 𝑃𝑖 + Δ𝑃𝑖 ≤ 127
and 𝐿𝑖,1 = 0, 𝐿𝑖,𝑠 = 1

(6)

wherewe use𝑤𝑒𝑞 = 1000 to force the optimizer to satisfy constraints
on both lightness and hue-chroma. This constrained optimization
problem can be solved using SciPy’s SLSQP solver (due to the in-
equalities). Although this formulation achieves good editing results
by considering the sparsity of palette change and lightness together,
the performance is far from real-time, even with analytical gradients.
For example, if there is a image-space and a palette constraint, Eq. 6

1Note that we append grey (the origin in 𝑎𝑏-space) to our palette. Virtually all colors
have non-zero weight with respect to grey, but this solution is much less undesirable.
Our goal is to find a new palette that uses as little grey as possible to make the sparsest
edits.

needs ∼26 seconds to converge with 𝑠 = 30 samples per curve. Our
real-time approach (Sec. 4.3) takes ∼0.08 seconds.

4.3 Real-Time Optimization
The above approach, while correct, is too slow for a real-time re-
sponse when manipulating colors or editing curves. To address this,
we describe an approximately ∼400× to ∼800× faster optimization
approach. When optimizing Eq. 6, most of the time is spent solving
for lightness since it has (𝑠 ·𝑝) degrees of freedom.2 Our acceleration
scheme is based on a sequence of alternating optimization steps
(block coordinate descent) separating the small number of 𝑎𝑏-space
variables from the lightness curves. We solve each set of variables
independently and iteratively, updating the 𝐿2,1 square root scale
factors (Eq. 10) until convergence.

4.3.1 Lightness Optimization. Let the total sparsity loss in Eq. 6 be
𝐸 = 𝐸𝑠𝑝 +𝑤𝑒𝑞 (𝐸𝑙 + 𝐸𝑝). To solve for luminance, we can take the
gradient of 𝐸 with respect to 𝐿𝑖 and set it to zero:

𝜕𝐸

𝜕𝐿𝑖
=

𝜕𝐸𝑠𝑝

𝜕𝐿𝑖
+𝑤𝑒𝑞 ·

𝜕𝐸𝑙

𝜕𝐿𝑖
= 0 (7)

where
𝜕𝐸𝑠𝑝

𝜕𝐿𝑖
=

𝐵𝑇𝐵𝐿𝑖√︃
𝐿𝑇
𝑖
𝐵𝑇𝐵𝐿𝑖 +𝑤𝑠𝑝 · ∥𝑞𝑖 · Δ𝑃𝑖,∗∥22

(8)

and
𝜕𝐸𝑙

𝜕𝐿𝑖
=

𝑐∑︁
𝑗=1

2 ·𝑊𝑖 𝑗 · (𝑆 𝑗 ⊙
(

𝑝∑︁
𝑖=1

𝑊𝑖 𝑗𝐿𝑖

)
−𝐶 𝑗) ⊙ 𝑆 𝑗

+2 · (𝑆𝑖 ⊙ 𝐿𝑖 −𝐶𝑖) ⊙ 𝑆𝑖

(9)

We observe that Eq. 7 would be linear if the denominator in Eq. 8
were treated as a constant. We define scaling factors 𝑑𝑖 as

𝑑𝑖 =

√︃
𝐿𝑇
𝑖
𝐵𝑇𝐵𝐿𝑖 +𝑤𝑠𝑝 · ∥𝑞𝑖 · Δ𝑃𝑖,∗∥22 (10)

and the scaling matrix 𝐷 as

𝐷 = diag
(
[1/𝑑1, · · · , 1/𝑑𝑝]𝑇

)
∈ R𝑝×𝑝 (11)

We remind readers that 𝑞𝑖 here is the same 𝑞𝑖 defined in Eq. 3. To
express our entire system in matrix form, we define the lightness
matrix 𝐿 ∈ R𝑠×𝑝 whose columns are the 𝐿𝑖 vectors of function
values at sample points for 𝑓𝑖 . Algebraic manipulation of Eq. 7 (see
appendix) results in a linear system:

𝐴𝑥𝑙 = 𝑏 (12)

where

𝐴 = (𝐷 ⊗ (𝐵𝑇𝐵)) +𝑤𝑒𝑞 · (𝑊 ⊗ 𝐼𝑛) · diag(vec(2𝑆 ⊙ 𝑆)) · (𝑊𝑇 ⊗ 𝐼𝑛)
𝑥𝑙 = vec(𝐿)

and
𝑏 = 𝑤𝑒𝑞 · (𝑊 ⊗ 𝐼𝑛) · vec(2𝐶 ⊙ 𝑆)

Note that ‘vec’ refers to column-wise vectorization and ‘diag’ makes
a diagonal matrix from a vector. To enforce direct curve constraints
(i.e., the second gradient term in Eq. 9) in this formulation, we replace
rows of 𝐴 with identity rows at corresponding curve constraints’
locations and fill 𝑏 at the same locations with the corresponding
2We use 𝑠 = 100 and 𝑝 = 5 for all our examples.

ACM Trans. Graph., Vol. 42, No. 4, Article N. Publication date: August 2023.

N:6 • Cheng-Kang Ted Chao, Jason Klein, Jianchao Tan, Jose Echevarria, and Yotam Gingold

desired curve constraints. Eq. 12 is a small and sparse linear system
easily built and solved in real-time.

4.3.2 Palette Optimization. Consider an image-space constraint 𝑐𝑥
placed at image location 𝑥 with desired color 𝑐 ∈ R1×2. Let 𝑤𝑥 ∈
R1×𝑝 be the pixel weights obtained from𝑊 at 𝑥 . We wish to find
the sparsest change Δ𝑃 to the image palette 𝑃 :

min
Δ𝑃

𝑝∑︁
𝑖=1

√︃
𝑘𝑖 +𝑤𝑠𝑝 · ∥𝑞𝑖 · Δ𝑃𝑖,∗∥22

subject to 𝑤𝑥 · (𝑃 + Δ𝑃) = 𝑐𝑥 ,

− 128 ≤ 𝑃 + Δ𝑃 ≤ 127,
and (𝑃 𝑗,∗ + Δ𝑃 𝑗,∗) = 𝑐𝑃

(13)

where 𝑘𝑖 denotes 𝐿𝑇𝑖 𝐵
𝑇𝐵𝐿𝑖 . Here, the inequality constraint enforces

in-gamut colors and the final equality constraint enforces our palette
constraints (the 𝑗 th palette color of palette 𝑃 should equal 𝑐𝑃).

4.3.3 Alternating Optimization. We know from Eq. 12 that 𝐷 is the
bi-Laplacian contribution of different curves. We start the algorithm
by initializing 𝐷 to an identity matrix. Then, we solve Eq. 12 to
obtain updated 𝑘𝑖 . We solve Eq. 13 with these 𝑘𝑖 to find the best
sparse palette change. This gives us a more accurate scaling matrix
𝐷 . We alternate solving these two sub-problems until both 𝑘𝑖 and
Δ𝑃 converge. Our alternating optimization approach is two–three
orders of magnitude faster and, in our experience, always converges
to an identical, high-quality result. Pseudocode can be found in
Algorithm 1.

Algorithm 1:Alternating Optimization for Palette and light-
ness Sparsity

1 Initialization: 𝐷 (0) = 𝐼𝑝 , 𝑗 = 0;
2 𝑘
(1)
𝑖
← Solve Eq. 12 with 𝐷 (0) ;

3 Δ𝑃 (1) = Solve Eq. 13 with 𝑘 (1)
𝑖

;
4 𝐷 (1) ← Update (𝑘 (1)

𝑖
, Δ𝑃 (1));

5 while True do
6 if ∥Δ𝑃 (𝑗) − Δ𝑃 (𝑗+1) ∥𝐹 ≤ j.n.d. and ∥𝑘 (𝑗)

𝑖
− 𝑘 (𝑗+1)

𝑖
∥𝐹 ≤ 𝜖

then
7 break;
8 else
9 𝑗 ← 𝑗 + 1;

10 𝑘
(𝑗+1)
𝑖

← Solve Eq. 12 with 𝐷 (𝑗) ;
11 Δ𝑃 (𝑗+1) = Solve Eq. 13 with 𝑘 (𝑗+1)

𝑖
;

12 𝐷 (𝑗+1) ← Update (𝑘 (𝑗+1)
𝑖

, Δ𝑃 (𝑗+1));
13 end
14 end

5 RESULTS AND APPLICATIONS
A variety of edited results using ColorfulCurves can be seen in Figs. 1,
2, 15, 16, as well as results created as part of our expert study’s open
task (Fig. 14, Section 6). ColorfulCurves makes the convenience of
palette-based editing available to lightness curves by propagating

Input

Depth Map [Miangoleh et al. 2021]

Decrease the luminance

Difference Map [Andersson et al. 2020]

Depth-based
luminance

editing

Fig. 5. We create a depth palette (farthest, far, near, nearest) from a depth
map𝑀 [Miangoleh et al. 2021] and compute corresponding spatially coher-
ent weights in𝑀𝑋𝑌 -space. The depth palette is shown in grayscale (bottom
left). Our approach can create tone curves for each palette depth. Colorful-
Curves then computes the sparse change in tone curves (Eq. 12) with respect
to a constraint placed on the top-left of the input image. The difference
map [Andersson et al. 2020] (bottom right) demonstrates the sparsity of the
edits with respect to the depth values, mainly affecting regions of similar
depth to the user constraint.

changes to similar hue-chroma regions. We compare to state-of-the-
art palette-based editing [Tan et al. 2018a] in Figs. 3 and 13. Because
these approaches combine palette colors linearly, they do not pro-
vide enough flexibility to adjust contrast without undesirable side
effects. Fig. 6 shows a comparison with Photoshop’s Color Range
selection, which is a generalization of key-based approaches. With
these approaches, the selection is either too small and speckled
(even with feathering) or too large. Our evaluation (Sec. 6) describes
additional experiments with professionals using commercial tools.
ColorfulCurves is compatible with using a depth map for lightness
editing on image depth (Fig. 5) and is also able to perform control-
lable interactive grayscale conversion (Fig. 8).

Implementation and Performance. We implementedColorfulCurves
in Python using NumPy for the linear algebra and SciPy’s sequen-
tial least squares programming (SLSQP) solver for the optimization,
scikit-image for the color conversion, and Qt for the GUI. We also
experimented with an interior-point solver, but its performance was
worse than SLSQP. We have an optional dependency on PyTorch
or OpenCL for parallelizing scikit-image’s Lab-to-RGB conversion
with a lookup table on the GPU. After conversion to RGB-space,
ColorfulCurves clips out-of-gamut values to lie within [0, 1] (Fig. 7).
Note that our optimization is independent of image resolution.

Our alternating optimization (Sec. 4.3) is real-time and scales lin-
early with respect to palette size on different numbers and kinds of
constraints placed. We compare the performance of directly optimiz-
ing Eq. 6 with SLSQP versus our optimization approach (Sec. 4.2) for
several scenarios: (1) 𝑠 = 40, two image-space constraints and one
palette constraint: ∼89.8 seconds versus ∼0.14 seconds (641× faster).
(2) 𝑠 = 80, one image-space constraints, one palette constraint and
one curve constraint: ∼100.12 seconds versus ∼0.12 seconds (834×
faster).

ACM Trans. Graph., Vol. 42, No. 4, Article N. Publication date: August 2023.

ColorfulCurves: Palette-Aware Lightness Control and Color Editing via Sparse Optimization • N:7

In
pu

t

Photoshop Color Range

Ed
ite

d
M

at
te

ColorfulCurves

Hue
Shift

Fig. 6. A comparison with Color Range selection in Photoshop. The user wishes to change the green leaves to fall colors. In ColorfulCurves, the user places an
image-space color constraint (inside the white circle). The palettes and curves are automatically optimized. The optimized palette and curves can be seen in
the lower-left. The weights for the palette color chosen by ColorfulCurves’s sparse optimization are shown as its matte. Photoshop’s Color Range functionality
is applied at the same pixel location, followed by a manual hue/saturation shift to obtain a similar pixel color. Color Range obtains its mask with a fuzziness
threshold on the color distance to the selected pixel color. It is difficult to obtain an appropriate matte that is not speckled or too large. Feathering (1-pixel
shown) does not overcome this problem. Photo courtesy of weston m.

Input Edited
View 1

View 2

Fig. 7. ColorfulCurves operates in Lab-space, whose gamut is larger than
RGB. In this example, a single image-space constraint is placed changing
the brown shoe to an extreme red. ColorfulCurves clips the resulting pixel
colors lying outside the RGB gamut. Right: Two views of the clipped colors
in RGB space.

Applications. Our approach is not limited to using a color palette
and weights. Depth is also a popular option for edits, e.g., masking
the background and editing color and lightness separately from the
foreground. For this application, we extract a 1D “depth” palette
(farthest, far, near, nearest) from an inferred depth map [Miangoleh
et al. 2021]. The depth palette is a 1D convex hull with two more
internal vertices computed from K-means. Our approach is easily
compatible with this application (Fig. 5). Another application is
interactive control for grayscale conversion (Fig. 8). Inspired by
[Gooch et al. 2005] and [Margulis 2022], ColorfulCurves provides
user with control over the resulting contrast in luminosity based on
the colors in the input image.

6 EVALUATION
We performed an expert study with professional photographers and
photo editors to evaluate ColorfulCurves. We recruited ten partici-
pants, P1-P10, (ages 23-53, two women, eight men). Two of them
were contacted via social networks and the rest were paid $50 via

Input Output 1 Output 2

Fig. 8. Using ColorfulCurves for converting color images to grayscale. After
extracting the hue-chroma palette, we discard the 𝑎𝑏 components of the
palette colors and the final image. Since our tone curves are built upon
palette colors, users can still interactively control the contrast and exposure
separately. Photo courtesy of Europeana.

the UpWork freelancer platform. The participants had an average of
10 years of photo editing experience, ranging from three to thirty
years. The study (roughly an hour) was performed remotely and
asynchronously through our written instructions (see files in the
supplemental).
At the beginning of the study, experts followed a tutorial on

ColorfulCurves. Each expert was asked to complete three tasks. In the
first two tasks, experts were given two images, each with an editing
intent. Experts completed the same taskswith (1)ColorfulCurves and
(2) their most comfortable editing tool. (Six experts chose Photoshop
and four chose Lightroom). Each expert was asked to record the
time spent and save all the edited results for each task. The last task
asked experts to edit an image of their own using ColorfulCurves.
At the end of the study, all participants filled out a questionnaire.
This included eight unpaired Likert-scale questions (Q1-Q8).

ACM Trans. Graph., Vol. 42, No. 4, Article N. Publication date: August 2023.

https://unsplash.com/photos/g0bvYTcFN3o
https://unsplash.com/@europeana

N:8 • Cheng-Kang Ted Chao, Jason Klein, Jianchao Tan, Jose Echevarria, and Yotam Gingold

Input Edited (Lightroom)Edited (ColorfulCurves)

Fig. 9. Visual comparison of the sparsity of the edits performed by P8
using Lightroom and ColorfulCurves. The task required to make the parrot’s
forehead and the yellow feathers darker using just tone curves. Due to the
apparent subtlety of the edits, difference images were computed using FLIP
[Andersson et al. 2020]. With our method, P8 was able to focus more clearly
on the regions of interest, affecting slightly some areas in the background
with colors very similar to the parrot’s forehead, but leaving the rest mostly
unchanged. With Lightroom, the user was not able to push the edits as
much as with ColorfulCurves, given edits were already affecting most of the
image (background, parrot’s beak). The bottom left inset shows the image
palette and curve edits by P8. Photo courtesy of David Clode.

strongly
disagree

strongly
agree

Number of Responses
2 1 0 1 2 3 4 5 6 7 8 9 10

Q1: The color and luminance editing
tools gave me su�icient control

over the output image.

Q2: Recoloring the image by editing
pale�e colors was convenient.

Q3: Luminance editing by adjusting a
curve per pale�e color was convenient.

Q4: The automatically chosen pale�e
colors matched my expectations.

Q5: Recoloring the image by placing
pixel constraints was useful.

Q6: Placing and removing constraints
in any order was useful.

Q7: I found the overall interface easy
and fun to use.

Q8: I found the tool to be more e�ective
at color and luminance editing
compared to my most comfortable tool.

p = 0.019

p = 0.002

p = 0.054

p = 0.020

p < 0.001

p < 0.001

p = 0.019

p = 0.019

Fig. 10. Survey results from our expert study. 𝑝-values shown have been
adjusted with a Holm-Bonferroni family-wise error rate correction. Legend:
Light and dark blue refer to agree and strongly agree, respectively. Light and
dark red refer to disagree and strongly disagree, respectively. Grey refers to
neutral.

A comparison between results obtained with ColorfulCurves and
commercial software can be seen in Fig. 9. A gallery of edited results
from experts’ own images can be found in Fig. 14. We performed
statistical analysis on Q1-Q8 (Fig. 10). We compute satistical signifi-
cance via a one-sample non-parametric permutation t-test against
the theoretical median response of ‘neutral’. We corrected for the
family-wise error rate among the eight questions with a Holm-
Bonferroni correction. All questions obtained statistical significance
with (corrected) 𝑝 < 0.05 except for Q6.

To investigate the effect of tool preference, we also examined an-
swers for experts of Adobe Lightroom (N=4) and Adobe Photoshop

p = 0.010
p < 0.001
p < 0.001
p = 0.020
p = 0.063
p = 0.141
p = 0.268
p = 0.141

strongly
disagree

strongly
agree

Number of Responses
2 1 0 1 2 3 4 5 6 7 8 9 10

Q1: The color and luminance editing
tools gave me su!icient control

over the output image.

Q2: Recoloring the image by editing
pale"e colors was convenient.

Q3: Luminance editing by adjusting a
curve per pale"e color was convenient.

Q4: The automatically chosen pale"e
colors matched my expectations.

Q5: Recoloring the image by placing
pixel constraints was useful.

Q6: Placing and removing constraints
in any order was useful.

Q7: I found the overall interface easy
and fun to use.

Q8: I found the tool to be more e!ective
at color and luminance editing
compared to my most comfortable tool.

p = 0.019

p = 0.002

p = 0.054

p = 0.020

p < 0.001

p < 0.001

p = 0.019

p = 0.019

strongly
disagree

strongly
agree

Number of Responses
2 1 0 1 2 3 4 5 6 7 8 9 10

Q1: The color and luminance editing
tools gave me su!icient control

over the output image.

Q2: Recoloring the image by editing
pale"e colors was convenient.

Q3: Luminance editing by adjusting a
curve per pale"e color was convenient.

Q4: The automatically chosen pale"e
colors matched my expectations.

Q5: Recoloring the image by placing
pixel constraints was useful.

Q6: Placing and removing constraints
in any order was useful.

Q7: I found the overall interface easy
and fun to use.

Q8: I found the tool to be more e!ective
at color and luminance editing
compared to my most comfortable tool.

p = 0.019

p = 0.002

p = 0.054

p = 0.020

p < 0.001

p < 0.001

p = 0.019

p = 0.019

Adobe Lightroom (N=4)
p = 1.000
p = 0.154
p = 1.000
p = 0.154
p = 0.398
p = 1.000
p = 0.380
p = 1.000

Adobe Photoshop (N=6)

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

1 0 1 2 3 4 5 6

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

2 1 0 1 2 3 4
Number of Responses

Fig. 11. Survey results from experts using Adobe Photoshop (N=6) and
Adobe Lightroom (N=4). 𝑝-values shown have been adjusted with a Holm-
Bonferroni family-wise error rate correction. The scarcity of experts in
the respective sub-groups renders the sample size inadequate to obtain
statistical significance for most answers. Legend: Light and dark blue refer
to agree and strongly agree, respectively. Light and dark red refer to disagree
and strongly disagree, respectively. Grey refers to neutral.

(N=6) separately (Fig. 11). Note that our initial experimental protocol
did not set out to study these groups separately, as we did not know
which tools experts would choose. We corrected for the family-wise
error rate among all 24 questions with a Holm-Bonferroni correction.
Since the study populations of these sub-groups are quite small, the
statistical power is low. Nevertheless, responses to Q1–Q4 among
Photoshop users obtained statistical significance with (corrected)
𝑝 < 0.05. We also note that all of the negative sentiment in our
experiment came from the same expert (P4), who was one of the
four Lightroom users.

Seven of the ten experts strongly agreed that (Q5) recoloring the
image by placing pixel constraints was useful. They noted that, e.g.,
“[T]he color changing tool is amazing. I was blown away with the
accuracy of the selection tool and how clean it is. I also couldn’t go
to the blue tones with Lightroom like ColorfulCurves.”, “[I] have a
very good user experience for color adjustments. Compared with
only using curves to adjust color tones, visual adjustments allow
me to find the direction I want to adjust more quickly.” and “[T]he
color shifting was super easy and flawlessly happened. The final
outcome was as expected. Really love it.” One expert commented on
ColorfulCurves for portrait editing, “[T]o push the challenge further,
I choose a portrait to do a skin tone editing and the results are really
good.”
Eight of the ten experts agreed or strongly agreed that (Q8) “I

found the tool to be more effective at color and luminance editing

ACM Trans. Graph., Vol. 42, No. 4, Article N. Publication date: August 2023.

https://unsplash.com/photos/cQikP1grAgE

ColorfulCurves: Palette-Aware Lightness Control and Color Editing via Sparse Optimization • N:9

Input Edited

Fig. 12. Limitations of ColorfulCurves. First row: When different objects
have similar colors, they may share a palette color. Changing the color
on one object will apply similar color changes to the other objects (e.g.
the woman’s jacket and cat). Second row: If two different image-space
constraints are placed on pixels with similar input colors, ColorfulCurves is
unable to find a palette satisfying both constraints simultaneously without
drastic, undesirable changes elsewhere (e.g. the spoon and table).

compared to my most comfortable tool.” The experts appreciated
the speed and sparsity of color and luminance editing, commenting,
e.g., “[I]t was impossible for me to achieve same results using curves
adjustments in photoshop, had to use several curves and selective
masking. Using ColorfulCurves was easy and quick.”, “[I]f we talk
about ColorfulCurves and especially curves, it helps quickly change
the color. In Photoshop we can’t do so clear color in curves because
it worked only on shadows and highlights. So, we need to use others
tools in PS, such as hue to change the color. So, curves in Colorful-
Curves work better with colors than curves in PS.”, “ColorfulCurves
is intuitive and easy to adjust the color of a specific area, which
cannot be achieved with lightroom.”, and “[V]ery easy to adjust for
regional color, brightness.”
Overall, ColorfulCurves was favored by our experts. Nine of the

ten experts agreed or strongly agreed that (Q3) our palette-based
tone curves were convenient for luminance editing. Eight of the ten
users found ColorfulCurves more effective than their most comfort-
able tool. The only question for which we did not achieve statisti-
cal significance regarded the commutative nature of our interface
(Q6: “Placing and removing constraints in any order was useful.”).
We speculate that this aspect was not meaningfully different than
non-destructive editing experts are already familiar with such as
adjustment layers.

7 CONCLUSION AND FUTURE WORK
We presented a new approach for color and lightness editing, uni-
fying tone curves with palette-based editing. Our approach gives

photo editors a more flexible (tone curves) and usable (by solving the
indirection from an image to the palette and curves) approach to hue,
chroma, and lightness manipulation in images. Our approach creates
sparser edits compared to state-of-the-art palette-based approaches
and commercial software. Most experts agreed that ColorfulCurves is
more effective at color and lightness editing compared to Photoshop
and Lightroom.

Limitations and Future Work. ColorfulCurves may be unable to
recolor specific image regions when there is a semantic but not
color difference (Fig. 12). Extending ColorfulCurves to use multiple
palettes on different semantic regions or semantic weights may
mitigate this problem. In the future, we would also like to explore
text-guided editing ([Avrahami et al. 2022; Bar-Tal et al. 2022]). We
would also like to extend our work to video domain. Our 2D palettes
are simpler to track than previous work on palette-based video
editing [Du et al. 2021].

ACKNOWLEDGEMENTS
We thank Yu-Lin Hsu for statistical advice and the anonymous
reviewers for their constructive feedback and suggestions. Yotam
Gingold and Cheng-Kang Ted Chao were supported in part by a gift
from Adobe Inc.

REFERENCES
Adobe. 2020. What is Color Grading in Lightroom? https://blog.adobe.com/en/publish/

2020/10/20/introducing-color-grading. [Online; accessed 24-January-2023].
Adobe. 2022. Adjust the colors in your photos on your phone or tablet. https://

helpx.adobe.com/lightroom-cc/how-to/color-adjustment.html. [Online; accessed
24-January-2023].

Naofumi Akimoto, Huachun Zhu, Yanghua Jin, and Yoshimitsu Aoki. 2020. Fast Soft
Color Segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 8277–8286.

Yağiz Aksoy, Tunç Ozan Aydin, Marc Pollefeys, and Aljoša Smolić. 2016. Interactive
high-quality green-screen keying via color unmixing. ACM Transactions on Graphics
(TOG) 35, 5 (2016), 152.

Yağiz Aksoy, Tunç Ozan Aydin, Aljoša Smolić, and Marc Pollefeys. 2017. Unmixing-
based soft color segmentation for imagemanipulation. ACMTransactions on Graphics
(TOG) 36, 2 (2017), 19.

Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle
Åström, and Mark D Fairchild. 2020. FLIP: A Difference Evaluator for Alternating
Images. Proc. ACM Comput. Graph. Interact. Tech. 3, 2 (2020), 15–1.

Omri Avrahami, Dani Lischinski, and Ohad Fried. 2022. Blended diffusion for text-driven
editing of natural images. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 18208–18218.

Reynold J Bailey and Cindy Grimm. 2006. Perceptually meaningful image editing:
Depth. (2006).

Omer Bar-Tal, Dolev Ofri-Amar, Rafail Fridman, Yoni Kasten, and Tali Dekel. 2022.
Text2live: Text-driven layered image and video editing. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XV. Springer, 707–723.

Blackmagic Design. 2020. DaVinci Resolve 18. https://www.blackmagicdesign.com/
products/davinciresolve/color. [Online; accessed 24-January-2023].

Ivaylo Boyadzhiev, Kavita Bala, Sylvain Paris, and Edward Adelson. 2015. Band-sifting
decomposition for image-based material editing. ACM Transactions on Graphics
(TOG) 34, 5 (2015), 1–16.

Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. 2011. Learning
photographic global tonal adjustment with a database of input/output image pairs.
In CVPR 2011. IEEE, 97–104.

Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi, and Adam Finkelstein. 2015a.
Palette-based Photo Recoloring. ACM Trans. Graph. 34, 4 (July 2015).

Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi, and Adam Finkelstein. 2015b.
Palette-based photo recoloring. ACM Trans. Graph. 34, 4 (2015), 139–1.

Color Grading LLC. 2022. Cinema Grade. https://www.cinemagrade.com/. [Online;
accessed 24-January-2023].

Paul Debevec and Simon Gibson. 2002. A tone mapping algorithm for high contrast
images. In 13th eurographics workshop on rendering: Pisa, Italy. Citeseer.

ACM Trans. Graph., Vol. 42, No. 4, Article N. Publication date: August 2023.

https://blog.adobe.com/en/publish/2020/10/20/introducing-color-grading
https://blog.adobe.com/en/publish/2020/10/20/introducing-color-grading
https://helpx.adobe.com/lightroom-cc/how-to/color-adjustment.html
https://helpx.adobe.com/lightroom-cc/how-to/color-adjustment.html
https://www.blackmagicdesign.com/products/davinciresolve/color
https://www.blackmagicdesign.com/products/davinciresolve/color
https://www.cinemagrade.com/

N:10 • Cheng-Kang Ted Chao, Jason Klein, Jianchao Tan, Jose Echevarria, and Yotam Gingold

Input [Tan et al. 2018]ColorfulCurves

Add contrast to the sky

Darken the trees without
changing the field

Increase contrast on the
oranges and jacket

Darken the cup without
changing the matcha latte color

Fig. 13. Comparison to Tan et al. [2018a]. Editing intents are shown in green
above each input image. Our approach enables flexible lightness editing
via tone curves, allowing photographers to easily add contrast. In Tan et al.
[2018a], contrast is difficult to achieve, since images are linear combinations
of palette colors. Multiple colors must be edited, with undesirable side effects.
Photos courtesy of Omar Ram, Open Photo, and Bannon Morrissy.

Zheng-Jun Du, Kai-Xiang Lei, Kun Xu, Jianchao Tan, and Yotam Gingold. 2021. Video
Recoloring via Spatial-Temporal Geometric Palettes. ACM Transactions on Graphics
(TOG) 40, 4 (Aug. 2021).

Fredo Durand and Julie Dorsey. 2000. Interactive tone mapping. In Eurographics
Workshop on Rendering Techniques. Springer, 219–230.

Input Edited

Fig. 14. Experts (P1, P3, P6, P8, P10 from top to bottom) from our expert
study used ColorfulCurves to edit images in an open task. Image and palette
constraints are not shown. Photos courtesy (top to bottom) of Mariano Garcia,
Cheng-Ju Ko, Eric Wang, Mina Nabil, and Jaan AlBalushi.

ACM Trans. Graph., Vol. 42, No. 4, Article N. Publication date: August 2023.

https://unsplash.com/photos/vcRHpfrsaL8
https://unsplash.com/photos/EwvvYG564WY
https://unsplash.com/photos/5SQFR4bZYCU
https://www.minanabilfilms.com/

ColorfulCurves: Palette-Aware Lightness Control and Color Editing via Sparse Optimization • N:11

Marie Gardiner. 2022. How to Use the Primaries Color Wheels in DaVinci Re-
solve. https://photography.tutsplus.com/tutorials/primaries-color-wheels-resolve--
cms-41775. [Online; accessed 24-January-2023].

Amy A Gooch, Sven C Olsen, Jack Tumblin, and Bruce Gooch. 2005. Color2gray:
salience-preserving color removal. ACM Transactions on Graphics (TOG) 24, 3 (2005),
634–639.

Mairéad Grogan and Aljosa Smolic. 2020. Image Decomposition Using Geometric
Region Colour Unmixing. In European Conference on Visual Media Production (Virtual
Event, United Kingdom) (CVMP ’20). Association for Computing Machinery, New
York, NY, USA, Article 2, 10 pages. https://doi.org/10.1145/3429341.3429354

Daichi Horita, Kiyoharu Aizawa, Ryohei Suzuki, Taizan Yonetsuji, and Huachun Zhu.
2022. Fast Nonlinear Image Unblending. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV). 2051–2059.

Erum Arif Khan, Erik Reinhard, Roland W Fleming, and Heinrich H Bülthoff. 2006.
Image-based material editing. ACM Transactions on Graphics (TOG) 25, 3 (2006),
654–663.

Yuki Koyama and Masataka Goto. 2018. Decomposing images into layers with advanced
color blending. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 397–407.

Life After Photoshop. 2020. Lightroom tone curves explained: Tone Curve vs Point
Curve vs Target Curve adjustments. https://www.lifeafterphotoshop.com/lightroom-
tone-curves-explained-tone-curve-vs-point-curve-vs-target-curve/. [Online; ac-
cessed 24-January-2023].

Hailong Ma, Sibo Feng, Xi Xiao, Chenyu Dong, and Xingyue Cheng. 2022. Cascade
Luminance and Chrominance for Image Retouching: More Like Artist. arXiv preprint
arXiv:2205.15999 (2022).

Rafał Mantiuk, Scott Daly, and Louis Kerofsky. 2008. Display adaptive tone mapping.
In ACM SIGGRAPH 2008 papers. 1–10.

Dan Margulis. 2022. Wiki (Dan Margulis). (2022). https://en.wikipedia.org/wiki/Dan_
Margulis#cite_note-1

S Mahdi H Miangoleh, Sebastian Dille, Long Mai, Sylvain Paris, and Yagiz Aksoy.
2021. Boosting monocular depth estimation models to high-resolution via content-
adaptive multi-resolution merging. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 9685–9694.

Jianchao Tan, Jose Echevarria, and Yotam Gingold. 2018a. Efficient palette-based decom-
position and recoloring of images via RGBXY-space geometry. ACM Transactions
on Graphics (TOG) 37, 6 (2018), 1–10.

Jianchao Tan, Jose Echevarria, and Yotam Gingold. 2018b. Palette-based image de-
composition, harmonization, and color transfer. arXiv preprint arXiv:1804.01225
(2018).

Jianchao Tan, Jyh Ming Lien, and Yotam Gingold. 2016. Decomposing Images into
Layers via RGB-Space Geometry. ACM Transactions on Graphics 36, 1 (2016), 1–14.

Yael Vinker, Inbar Huberman-Spiegelglas, and Raanan Fattal. 2021. Unpaired learn-
ing for high dynamic range image tone mapping. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 14657–14666.

Yili Wang, Yifan Liu, and Kun Xu. 2019. An Improved Geometric Approach for Palette-
based Image Decomposition and Recoloring. In Computer Graphics Forum, Vol. 38.
Wiley Online Library, 11–22.

Qing Zhang, Yongwei Nie, Lei Zhu, Chunxia Xiao, and Wei-Shi Zheng. 2021a. A
Blind Color Separation Model for Faithful Palette-based Image Recoloring. IEEE
Transactions on Multimedia (2021), 1–1. https://doi.org/10.1109/TMM.2021.3067463

Q. Zhang, Y. Nie, L. Zhu, C. Xiao, and W.-S. Zheng. 2021b. A Blind Color Separation
Model for Faithful Palette-based Image Recoloring. IEEE Transactions on Multimedia
(2021), 1–1. https://doi.org/10.1109/TMM.2021.3067463 Conference Name: IEEE
Transactions on Multimedia.

A ALGEBRAIC DERIVATION
We define 𝐿 ∈ R𝑠×𝑝 , where each column of 𝐿 is 𝐿𝑖 ∈ R𝑠 , i.e. function
values at sample points for 𝑓𝑖 . Note that the second term of Eq. 9 is
the direct lightness curve constraints. In other words, the second
term forces specific entries of 𝐿𝑖 to be specific values. Therefore, we
do not need to consider it when deriving the linear system since we
can replace the rows of the left-hand side in the final linear system
with identity rows at corresponding lightness curve constraints’
locations. Therefore, to express Eq. 9 in matrix form, we can write

𝜕𝐸𝑙

𝜕𝐿
= (2𝐻 ⊙ 𝑆)𝑊𝑇 (14)

where 𝐻 = 𝑆 ⊙ (𝐿𝑊) −𝐶 . In addition, if we treat the denominator
in Eq. 8 as a constant, we obtain

𝜕𝐸𝑠𝑝

𝜕𝐿
= (𝐵𝑇𝐵)𝐿𝐷 (15)

where 𝐷 is a diagonal scaling matrix (Eq. 11). By substituting these
terms into Eq. 7 and solving for zero gradient, we end up with the
linear system:

(𝐵𝑇𝐵)𝐿𝐷 = −𝑤𝑒𝑞 · (2𝐻 ⊙ 𝑆)𝑊𝑇 (16)

Note that we need to simplify Eq. 16 since the right-hand side
involves 𝐿. We start by substituting for 𝐻 and factoring out 𝐿:

(𝐵𝑇𝐵)𝐿𝐷 = −𝑤𝑒𝑞 · (2(𝑆 ⊙ (𝐿𝑊) −𝐶) ⊙ 𝑆)𝑊𝑇

= −𝑤𝑒𝑞 · ((2𝑆 ⊙ (𝐿𝑊) − 2𝐶) ⊙ 𝑆)𝑊𝑇

= −𝑤𝑒𝑞 · (2𝑆 ⊙ (𝐿𝑊) ⊙ 𝑆 − 2𝐶 ⊙ 𝑆)𝑊𝑇

= −𝑤𝑒𝑞 · (2𝑆 ⊙ 𝑆 ⊙ (𝐿𝑊) − 2𝐶 ⊙ 𝑆)𝑊𝑇

= −𝑤𝑒𝑞 · (2𝑆 ⊙ 𝑆 ⊙ (𝐿𝑊))𝑊𝑇 +𝑤𝑒𝑞 · (2𝐶 ⊙ 𝑆)𝑊𝑇

We move all terms involving 𝐿 to the left-hand side:

(𝐵𝑇𝐵)𝐿𝐷 +𝑤𝑒𝑞 · (2𝑆 ⊙ 𝑆 ⊙ (𝐿𝑊))𝑊𝑇 = 𝑤𝑒𝑞 · (2𝐶 ⊙ 𝑆)𝑊𝑇

We vectorize both sides of the above linear equation:

vec((𝐵𝑇𝐵)𝐿𝐷) +𝑤𝑒𝑞 · vec((2𝑆 ⊙ 𝑆 ⊙ (𝐿𝑊))𝑊𝑇)

= 𝑤𝑒𝑞 · vec((2𝐶 ⊙ 𝑆)𝑊𝑇)
(17)

Notice that 𝐷 is a diagonal matrix. The first term of the left-hand
side in Eq. 17 is

vec((𝐵𝑇𝐵)𝐿𝐷) = (𝐷 ⊗ (𝐵𝑇𝐵)) · vec(𝐿)
The right-hand side of Eq. 17 is

𝑤𝑒𝑞 · vec((2𝐶 ⊙ 𝑆)𝑊𝑇) = 𝑤𝑒𝑞 · (𝑊 ⊗ 𝐼𝑛) · vec(2𝐶 ⊙ 𝑆)
The second term of the left-hand side in Eq. 17 is trickier. We need
to expand the Hadamard products to factor out 𝐿. Dropping the𝑤𝑒𝑞

for simplicity,
vec((2𝑆 ⊙ 𝑆 ⊙ (𝐿𝑊))𝑊𝑇)

= (𝑊 ⊗ 𝐼𝑛) · vec(2𝑆 ⊙ 𝑆 ⊙ (𝐿𝑊))
= (𝑊 ⊗ 𝐼𝑛) · [vec(2𝑆 ⊙ 𝑆) ⊙ vec(𝐿𝑊)]

= (𝑊 ⊗ 𝐼𝑛) · [Diag(vec(2𝑆 ⊙ 𝑆)) · vec(𝐿𝑊)]
= (𝑊 ⊗ 𝐼𝑛) · Diag(vec(2𝑆 ⊙ 𝑆)) · (𝑊𝑇 ⊗ 𝐼𝑛) · vec(𝐿)

Finally, we combine all the equations above. Our solution is obtained
by solving the linear system 𝐴𝑥𝑙 = 𝑏 where

𝐴 = (𝐷 ⊗ (𝐵𝑇𝐵)) +𝑤𝑒𝑞 · (𝑊 ⊗ 𝐼𝑛) · Diag(vec(2𝑆 ⊙ 𝑆)) · (𝑊𝑇 ⊗ 𝐼𝑛)
𝑥𝑙 = vec(𝐿)

and
𝑏 = 𝑤𝑒𝑞 · (𝑊 ⊗ 𝐼𝑛) · vec(2𝐶 ⊙ 𝑆)

□

ACM Trans. Graph., Vol. 42, No. 4, Article N. Publication date: August 2023.

https://photography.tutsplus.com/tutorials/primaries-color-wheels-resolve--cms-41775
https://photography.tutsplus.com/tutorials/primaries-color-wheels-resolve--cms-41775
https://doi.org/10.1145/3429341.3429354
https://www.lifeafterphotoshop.com/lightroom-tone-curves-explained-tone-curve-vs-point-curve-vs-target-curve/
https://www.lifeafterphotoshop.com/lightroom-tone-curves-explained-tone-curve-vs-point-curve-vs-target-curve/
https://en.wikipedia.org/wiki/Dan_Margulis#cite_note-1
https://en.wikipedia.org/wiki/Dan_Margulis#cite_note-1
https://doi.org/10.1109/TMM.2021.3067463
https://doi.org/10.1109/TMM.2021.3067463

N:12 • Cheng-Kang Ted Chao, Jason Klein, Jianchao Tan, Jose Echevarria, and Yotam Gingold

Input Edited Input Edited

Fig. 15. ColorfulCurves can also be used to edit different art styles, including realism, impressionism, and oil painting. Photo courtesy (from top to bottom) of
Europeana, Europeana, Vojtech Bruzek, and Europeana.

Input Edited Input Edited

Fig. 16. ColorfulCurves can edit a variety of different landscapes, still life, objects, and food. Photo courtesy (from top to bottom) of Garreth Paul, Casey Horner,
Morash, and Brooke Lark.

ACM Trans. Graph., Vol. 42, No. 4, Article N. Publication date: August 2023.

https://unsplash.com/photos/YIfFVwDcgu8
https://unsplash.com/photos/88w2yI5A78Y
https://unsplash.com/photos/mCjA1I8SlS8
https://unsplash.com/photos/VsnDYMWollM
https://unsplash.com/photos/FdP4asoEASY
https://unsplash.com/photos/75_s8iWHKLs
https://unsplash.com/photos/z8ym2XTZ0ig
https://unsplash.com/photos/F_IST8bKxhI

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Motivation
	4 Method
	4.1 Curve Desiderata
	4.2 Optimizing for Sparse Edits
	4.3 Real-Time Optimization

	5 Results and Applications
	6 Evaluation
	7 Conclusion and Future Work
	References
	A Algebraic Derivation

